
A Review on Creation of Dynamic Virtual
Honeypots Using Hadoop

 Sumaiyya Z. Khan, Prof. D.M.Dakhane , Prof. R.L.Pardhi

Sipna College of Engineering and Technology,

Amravati, Maharashtra, India.

Abstract— System security personnel fight a seemingly
unending battle to secure their digital assets against an ever-
increasing onslaught of attacks. Honeypots- A security
resource whose value lies in being probed, attacked, or
compromised, provides a valuable tool to collect information
about the behaviors of attackers in order to design and
implement better defenses. Any commander will often tell his
soldiers that to secure yourself against the enemy, you have to
first know who your enemy is. This military doctrine readily
applies to the world of network security. Just like the military,
you have resources that you are trying to protect. To help
protect these resources, you need to know who is your threat
and how they are going to attack. On demand allocation of
honeypots at right places on the network and at right time
would considerably make the network more secure and harder
to sneak into. This review paper is based on an idea of
dynamically creating, modifying and managing virtual
honeypots. This system combines the concept of honeypots and
uses big data analyzer, Hadoop for quick information retrieval
and analysis. The goal of this proposed system is to create
evanescent honeypots at right places and times, on demand
.
Keywords— Honeypots, Virtual Honeypots, Hadoop, Dynamic
Honeypot Construction.

I. INTRODUCTION
"A honeypot is an information system resource

whose value lies in unauthorized or illicit use of that
resource [1].” This means that whatever we designate as a
honeypot, it is our expectation and goal to have the system
probed, attacked, and potentially exploited. The honeypot
contains no data or applications critical to the company but
has enough interesting data to lure a cracker- a programmer
who cracks (gains unauthorized access to) computers,
typically to do malicious things.

Most current configurations are static setups
consisting of either low interaction or high-interaction
environments. Low-interaction honeypots have limited
interaction, they normally work by emulating services and
operating systems. Attacker activity is limited to the level of
emulation by the honeypot. High-interaction honeypots are
different, they are usually complex solutions as they involve
real operating systems and applications. Nothing is
emulated, we give attackers the real thing. That is, some of
the vulnerable or important systems are identified
beforehand, and their corresponding honeypots are
maintained. It is unfeasible to maintain honeypots
pertaining to the entire network.

To solve this problem, dynamic honeypots came to
rescue. Dynamic Honeypot is a solution, you simply plug
into your network, it learns the environment, deploys the
proper number and configuration of honeypots, and adapts

to any changes in your networks [7]. Although there are
some dynamic Honeypots, deployment of right number of
virtual Honeypots at right places and at right time on
demand is the need of the hour.

A physical honeypot is a real machine with its own
IP address. Deploying a physical honeypot is often time
intensive and expensive as different operating systems
require specialized hardware and every honeypot requires
its own physical system. A virtual honeypot is a simulated
machine with modeled behaviors, one of which is the
ability to respond to network traffic. Multiple virtual
honeypots can be simulated on a single system [10].
 Hadoop is a “flexible and available architecture for
large scale computation and data processing on a network
of commodity hardware” [9]. It is an open source
framework for processing, storing and analyzing massive
amounts of distributed unstructured data. It was designed to
handle petabytes and Exabyte’s of data distributed over
multiple nodes in parallel. Hadoop clusters run on
inexpensive commodity hardware so projects can scale-out
without breaking the bank.

II. LITERATURE REVIEW AND RELATED WORK
Security has one purpose: to protect assets. For

most of history, this meant building strong walls to stop the
enemy and establishing small, well-guarded doors to
provide secure access. Malicious activities on the Web
make use of compromised Web servers, because these
servers often have high page ranks and provide free
resources. Attackers are therefore constantly searching for
vulnerable servers. How attacker’s find, compromise, and
misuse vulnerable servers [3], characterized attacker
behavior and develop simple techniques to identify attack
traffic.
 Honeypots are usually deployed with the intent of
capturing interactions with unsuspecting adversaries. The
captured interactions allow researchers to understand the
patterns and behaviour of attackers. For example,
honeypots have been used to automate the generation of
new signatures for network intrusion detection systems [2],
collect malicious binaries for analysis, and quantify
malicious behaviour through measurement studies.
 Research effort in Dynamic Honeypot
Construction [3], a method to automatically and
dynamically configure honeypots based on the results of
network scans. These dynamically constructed honeypots
then emulate a system or network of systems in order to
collect information to better protect that network. This
dynamic honeypots configuration methods has been
implemented and tested, and can now enhance the ability of

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 421-423

www.ijcsit.com 421

system administrators to identify system vulnerabilities.
 A book entitled “Honeypots: Tracking Hackers”
by Lance Spitzner [4], is about keeping the bad guys in-
about building computers you want to be hacked.
Traditionally, security has been purely defensive. There has
been little an organization could do to take the initiative and
challenge the bad guys. Honeypots change the rules. They
are a technology that allows organizations to take the
offensive.
 Honeypots come in a variety of shapes and sizes-
everything from a simple Windows system emulating a few
services to an entire network of productions systems
waiting to be hacked. Honeypots also have a variety of
values - everything from a burglar alarm that detects an
intruder to a research tool that can be used to study the
motives of the black hat (bad) community. Honeypots are
unique in that they are not a single tool that solves a
specific problem. Instead, they are a highly flexible
technology that can fulfill a variety of different roles. It is
up to you how you want to use and deploy these
technologies.
 The Bait and Switch Honeypot [5], is a
multifaceted attempt to take honeypots out of the shadows
of the network security model and to make them an active
participant in system defense. To do this, we are creating a
system that reacts to hostile intrusion attempts by
redirecting all hostile traffic to a honeypot that is partially
mirroring your production system. Once switched, the
would-be hacker is unknowingly attacking your honeypot
instead of the real data and your clients and/or users still
safely accessing the real system. Life goes on, your data is
safe, and you are learning about the bad guy as an added
benefit.
 The Honeynet Project [6] provides the tools,
tactics and motives involved in computer and network
attacks, and shares the lessons learned.
 In a paper entitled “Dynamic Honeypot” by Lance
Spitzner [7], he stated that, the dynamic honeypot is a plug-
n-play solution. You simply plug it in and the honeypot
does all the work for you. It automatically determines how
many honeypots to deploy, how to deploy them, and what
they should look like to blend in with your environment.
Even better, the deployed honeypots change and adapt to
your environment.
 Another paper entitled “BAIT-TRAP” [8],
proposes the design and implementation of BAIT-TRAP, a
catering honeypot architecture. By carefully monitoring
network activities, BAIT-TRAP dynamically identifies
“bait” services and automatically composes “attractive”
honeypots in order to capture the expected attacks. Within
seconds, a newly composed honeypot will be automatically
deployed and exposed to potential attackers.

III. ANALYSIS OF PROBLEM
Consider two systems A and B in some network (See

Fig. 1) System B was found to be important and had its
equivalent honeypot B'. System A did not have its
equivalent honeypot. If an attacker tries to exploit A without
falling for honeypot B', the main purpose of having a
honeypot in the network is unused. It is expensive to
maintain honeypots that yield us no information

whatsoever. It is imperative to maintain only those
honeypots that could be potential targets for the attacker.
Had there been a honeypot for A, it could have provided us
a great deal of information.

Fig. 1 : Honeypot deployed in an Ordinary Network.

IV. PROPOSED WORK

 The problem mentioned above can be solved in the
following manner. In this endeavor, no honeypots are
deployed beforehand. The honeypots are generated 'on-
demand', as per the needs generated by the network. This
will not only solve the above problem but it is also an
efficient way to do so.

The attacker will experience an obscured network
and will be redirected to the newly created honeypot on
trying to connect the victim machine. Thus the machine will
remain secure from present as well as such other malicious
attacks in the future. The proposed system will enable on
demand allocation of Honeypots over the network
emulating some of the actual running processes. Dynamic
honeypots radically revolutionize the deployment and
maintenance of honeypots. By learning and monitoring our
networks in real time, they become a fire-and-forget
solution. Not only do they become cost-effective to deploy
and maintain, but they have better integration into our
network. Dynamic and evanescent deployment of
Honeypots at runtime will only serve to support and
strengthen the current available defenses.

In addition to this, by using Hadoop in the
proposed system we can store enormous data sets across
distributed clusters of servers and then run “distributed”
analysis applications in each cluster. It’s designed to be
robust, in this Big Data applications will continue to run
even when individual servers – or clusters – fail. It makes
the proposed system more efficient, because it doesn’t
require our system to shuttle huge volumes of data across
network.

V. APPLICATIONS
1. Intrusion Detection: Intrusion Detection is the art of

detecting inappropriate, incorrect, or anomalous
activity. The proposed system can be used to determine
if a computer network or server has experienced an
unauthorized intrusion.

2. Social Networking: Web-based social systems enable
new community-based opportunities for participants to
engage, share, and interact. This community value and
related services like search and advertising are

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 421-423

www.ijcsit.com 422

threatened by spammers, content polluters, and malware
disseminators. In an effort to preserve community value
and ensure long-term success, we can use proposed for
uncovering social spammers in online social systems.

3. Network Forensics: Network forensics deals with the
capture, recording and analysis of network events in
order to discover evidential information about the
source of security attacks in a court of law. Using this
system we can gather intelligence about the enemy and
the tools and tactics of network intruders.

4. Campus Net Security: With the development of digital
campus construction, the campus network size has been
rapid growth, but there are also many network security
problems. If this is applied to the campus network it can
make the security of campus network unobstructed.

VI. CONCLUSION

 Honeypots with Hadoop can be found to be more
efficient as compared to the conventional honeypot
deployment. Standard honeypot deployment yields
productive information only if it is explicitly probed or
fiddled with by the attacker . This, on the other hand,
promises useful data irrespective of the system on the
network being targeted. This system would greatly benefit
the entire computing community at large. Information
security is an unending battle to safeguard our digital assets.

No security mechanism can be classified as 'foolproof' as
newer and stronger attacks are being discovered. Honeypots
with Hadoop would enable us to get into the attacker's mind
to some extent and bolster our defenses.

REFERENCES

[1] Lance Spitzner, Honeypots: Definitions and value of Honeypots.
http://www.tracking-hackers.com.

[2] John P. John, Fang Yuet et al., Heat-seeking Honeypots: Design and
Experience. In Proceedings of WWW 2011-Session Web Security,
2011.

[3] Christopher Hecker, Kara L. Nance, and Brian Hay, ASSERT Centre,
University of Alaska Fairbanks. Dynamic Honeypot Construction. In
proceedings of the 10th Colloquium for Information Systems
Security Education University of Maryland, University College
Adelphi, MD June 5-8, 2006.

[4] L. Spitzner, 2002, Honeypots tracking Hackers. lsted. Boston, MA,
USA: Addison Wesley.

[5] The Bait and Switch Honeypot,
http://www.violating.us/projects/baitnswitch/

[6] The Honeynet Project, http://www.honeynet.org.
[7] L. Spitzner, Dynamic Honeypots,

http://www.securityfocus.com/infocus/1731, Sept. 2003.
[8] BAIT-TRAP, http://www.cs.purdue.edu/homes/jiangx/BaitTrap, Dec.

2003.
[9] Research paper on A Study on “Role of Hadoop in Information

Technology era” by Vidyasagar S.D.
[10] A Virtual Honeypot Framework by Neils Provos, Google, Inc.

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 421-423

www.ijcsit.com 423

